Magnetization Transfer Imaging in Brain Corticospinal Tract is Associated with Clinical Walking Performance in Multiple Sclerosis

Fritz NE, Marasigan R, Keller J, Chiang CC, Calabresi PA, Zackowski KM.

Background

- O Up to 85% of individuals with MS report gait disturbance as their main complaint. (Kelleher et al 2010)
- O Walking is frequently tested in the clinic as a measure of physical function.

O EDSS

- O Walking evaluation based on distance and assistance level
- O No measure of:

O Time to complete walking tasks

OQuality of walking

O Functional tasks during walking

Background

O Previous work in Diffusion Tensor Imaging (DTI) and Magnetization Transfer Ratio (MTR) has focused on impairment measures (strength) and has shown:

O An association between strength and:

- O spinal cord MTR of the lateral column
- $\ensuremath{\mathsf{O}}\xspinal$ cord FA of whole spinal cord ROIs
- O Brainstem corticospinal tract (CST) MTR dissociates stronger vs. weaker muscle strength
- O Walking represents a global disability measure and may be more practical for monitoring change over time and with intervention.
 - O There are no previous studies examining the relationship between <u>walking performance</u> and <u>DTI or MT measures</u>

Objectives

- O Explore the relationship of clinical measures of walking and CST-specific MRI measures.
- O Determine the extent that quantitative measures of walking may add to basic clinical measures (age, gender, symptom duration and EDSS).

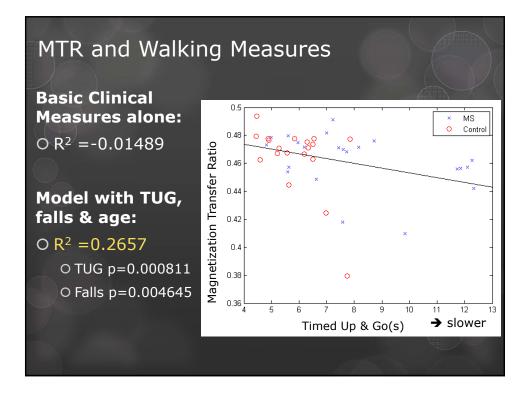
Hypotheses

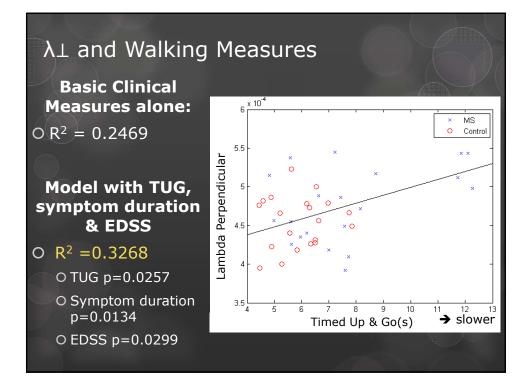
- O Tract-specific imaging measures of the CST will be related to walking.
- Quantitative measures of walking will add information about the MRI that is complimentary to basic clinical information.

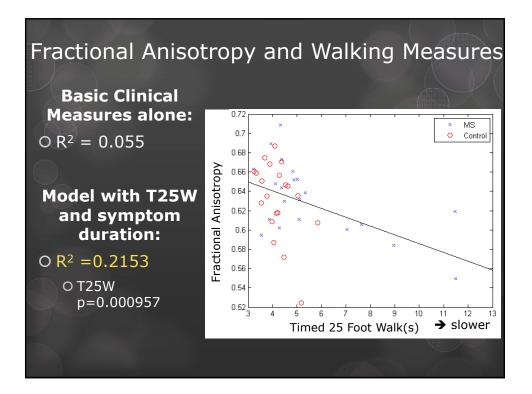
	Demographics							
		Age Mean(SD)	Gender	Symptom Duration Mean(SD)	EDSS Median (range)			
Q	MS n=23	49.1 (11.5) Years	12F; 11M	14.1 (10.2) Years	4.0 (1-6.5)			
	Control n=20	52.2 (10.4) Years	13F; 7M					
Clinical Measures O Strength								
	O Sensation O Walking							
	O Timed Up and Go (TUG)							
_	O Timed 25 Foot Walk (T25W)							
	O Two Minute Walk Test (2MWT							

MRI Measures	
O Phillips 3T Scanner	A LOS AND
 Diffusion Tensor Imaging (DTI) 	103. 10 201
O 33 direction	
O FOV: 212 x 154 x 212	公司的國
O 70 slices	STATIS BUL
O 2.2 SENSE	
0 TR = 7173 ms	AND DECK
O Scan Resolution 96x96	5
Common	- N/0 ->
 Magnetization Transfer Ratio (MTR) 	5 4 2
O FOV: 212 x 154 x 212	1 1 1 2
O 70 slices	E F P A M
O Scan Resolution 144x140	2 (242) -
O TR: 64.411 ms	1 510 1
	12 - 6

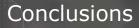

Results


Table 1. Comparisons Between Individuals with MS and Controls


	MS Mean(SD)	Control Mean(SD)	P-value	
Falls (# past month)	0.43 (0.51)	0	p=0.0009 ‡	
Hip Flexion Strength (lbs)	34.1(14.8)	46.6(10.5)	p=0.0025	
Vibration Sensation (vu)	7.5(3.5)	3.2(2.4)	P=0.0002 ‡	
TUG (s)	8.1(2.5)	5.9(1.0)	p=0.0006	
T25W (s)	5.7(2.4)	4.2(0.65)	p=0.0102 ‡	
2MWT (m)	162.6(45.5)	199.4(32.4)	p=0.0067	


‡ Indicates Mann-Whitney Tests; all others T-tests

Results Table 2. Correlations between Clinical Measures and MRI Measures									
	MTR Mean(SD)	λ⊥ Mean(SD)	λll Mean (SD)	Fractional Anisotropy Mean (SD)					
TUG	-0.4297	0.2948	0.1772	-0.2877					
	(0.0071)	(0.0613)	(0.2873)	(0.0681)					
T25W	-0.3972	0.3404	-0.0970	-0.4085					
	(0.0101)	(0.0294)	(0.5461)	(0.0080)					
2MWT	0.2889	-0.3059	-0.1420	0.2209					
	(0.0828)	(0.0656)	(0.4017)	(0.1889)					
EDSS	-0.1812	0.3829	0.3639	-0.1530					
	(0.2570)	(0.0135)	(0.0193)	(0.3395)					
Hip Flexion	0.2256	-0.1301	0.2476	0.2319					
Strength	(0.1561)	(0.4175)	(0.1186)	(0.1445)					
Spearman's R-value (p-value)									



6

Summary Quantitative measures of walking (T25W, TUG): Are related to MRI measures (MTR, λ⊥, FA). Add additional information to the EDSS that is relevant to MRI measures. Are specific to the primary complaint (walking) of our patients.

- O Our data links the CST to walking measures and highlights MTR as an important addition to structural MRI protocols.
- O Evaluating structure-function relationships is important for the development of quantitative outcome measures that are specific to patient complaints.

Future Directions

- O Establish Minimal Detectable Change (MDC) for these walking measures in MS
- O Expand the analysis to include volumetric imaging
- O Understand the relationship of MRI to falls data
- O Determine the predictive value of MRI and clinical measures in evaluating intervention responsiveness

Acknowledgments

National MS Society

- O NMSS Research Grant
- O Kathy Costello

Department of Neurology, Johns Hopkins School of Medicine

- O Peter Calabresi
- O Scott Newsome
- O Dorlan Kimbrough
- O Bryan Smith
- O Pavan Bhargava

Kennedy Krieger Motion Analysis Lab

O Nicole CornetO Allen JiangO Brian Diaz

Kennedy Krieger Kirby Center for Functional Imaging

- O Craig Jones
- O Kathie Kahl
- O Terri Brawner

Department of Biostatistics, Johns Hopkins School of Public Health

- O Ani Eloyan
- O Ciprian Crainiceanu

References

Basser PJ, Mattiello J, LeBihan D.MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259-267.

- Beaulieu C, Allen PS.Determinants of anisotropic water diffusion in nerves. Magn Reson Med. 1994;31:394-400.
- Ge Y, Law M, Grossman RI. Applications of diffusion tensor MR imaging in Multiple Sclerosis. Ann NY Acad Sci. 2005; 1064: 202-219.
- Ibrahim I, Tintera J, Skoch A, Jirů F, Hlustik P, Martinkova P, Zvara K, Rasova K. Fractional anisotropy and mean diffusivity in the corpus callosum of patients with multiple sclerosis: the effect of physiotherapy. *Neuroradiology*. 2011; 53: 917-926.
- Kelleher KJ, Spence W, Solomonidis S, Apatsidis D. The characterization of gait patterns in people with multiple sclerosis. *Disabil Rehabil.* 2010; 32(15): 1242-1250.
- Lin X, Tench CR, Morgan PS, Constantinescu CS. Use of combined conventional and quantitative MRI to quantify pathology related to cognitive impairment in multiple sclerosis. J Neuro Neurosurg Ps. 2008; 79: 437-441.
- Madden DJ, Bennett IJ, Song AW. Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. *Neuropsychol Rev.* 2009; 19: 415- 435.
- Mori S and Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. *Neuron.* 2006; 51(5): 527-539.
- Newsome SD, Wang JI, Kang JY, Calabresi PA, Zackowski KM. Quantitative measures detect sensory and motor impairments in multiple sclerosis. J Neurol Sci. 2011; 305: 103-111.
- Oh J, Zackowski K, Chen M, Newsome S, Saidha S, Smith SA, Diener-West M, Prince J, Jones CK, Van Zijl PC, Calabresi PA, Reich DS. Multiparametric MRI correlates of sensorimotor function in the spinal cord in multiple sclerosis. *Mult Scler.* 2013; 19(4): 427-435.
- Reich DS, Zackowski KM, Gordon-Lipkin EM, Smith SA, Chadkowski BA, Cutter GR, Calabresi PA. Corticospinal tract abnormalities are associated with weakness in multiple sclerosis. *Am J Neuroradiol.* 2008; 29: 333-339.
- Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. *Neuroimage*. 2002; 17: 1429-1436.
- Wilson M, Trench CR, Morgan PS, Blumhardt LD. Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability. J Neuro Neurosurg Ps. 2003; 74: 203-207.

Zackowski KM, Smith SA, Reich S, et al. Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord. *Brain.* 2009; 132: 1200-1209.