Cognitive Impairment and Magnetic Resonance Changes in Multiple Sclerosis

Victoria A Levasseur^{1,2}, Samantha Lancia¹, Gautam Adusumilli¹, Zach Goodman¹, Stuart D. Cook³, Diego Cadavid⁴, Robert T.

Naismith¹

¹Department of Neurology, Washington University, St. Louis, MO, USA

² University of Missouri School of Medicine, Columbia, MO, USA

³ New Jersey Medical School, Newark, NJ, USA

⁴ Biogen Idec, Cambridge, MA, USA

Background

- MS inflammatory lesions interrupt white matter tracts, resulting in impaired cognition
- Studies have identified associations between cognitive performance, cortical lesions and regional gray matter atrophy
- Longitudinal studies comparing MRI abnormalities and cognitive decline have relied upon brain MRIs acquired every 6-12 months

Hypotheses

Cognition will be more impaired in the presence of acute contrast-enhancing lesions compared to no active lesions

Cortical atrophy over 2 years will be associated with impaired cognition.

Materials & Methods

- 75 subjects with RRMS
- MRIs were performed monthly for at least the first year of this 2-year study
- Comprehensive neurocognitive battery was administered at 0, 6, 12, and 24 months

Cognitive Sets and Represented Domains

Set	Domain	Subtest
(A) Information Processing/M emory	Visual Learning	Ruff Figural Fluency Test error ratio
	Auditory Processing	PASAT
	Verbal Learning	California Verbal Learning Test trials 1-5 total
	Processing Speed	WAIS-III Digit Symbol
(B) Visual- Spatial/ Executive Function	Visual-spatial	WMS-III Spatial Span
	Problem Solving	Wisconsin Card Sorting Perservative Responses
	Visual Scanning	WAIS-III Symbol Search
	Planning/Sequencing	Tower of London % Planning Time (Problem solving time)
	Visual Interference	Stroop Color-Word Test
(C) Verbal Memory/ Attention	Verbal Abilities	WAIS-III Information Scale
	Attention Span	WAIS-III Digit Span

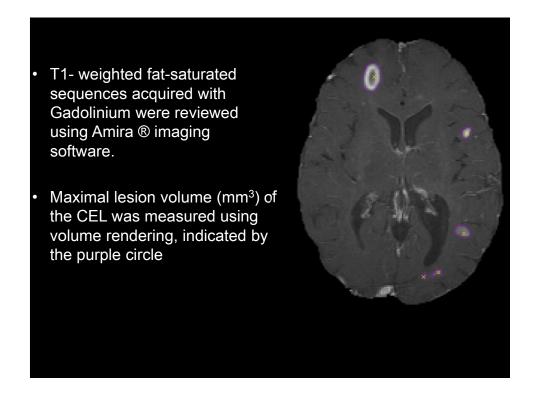
Criteria for Cognitive Impairment

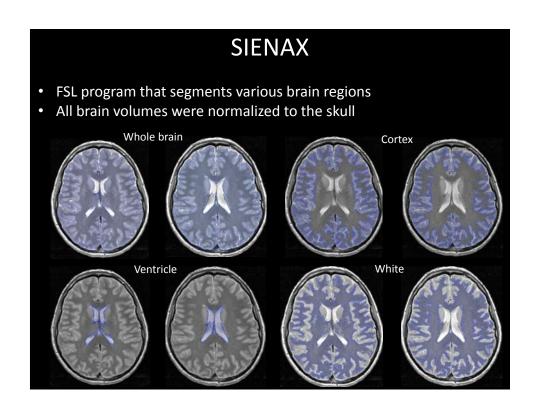
None

• Impairment on 0-1 Individual Tests

Mild

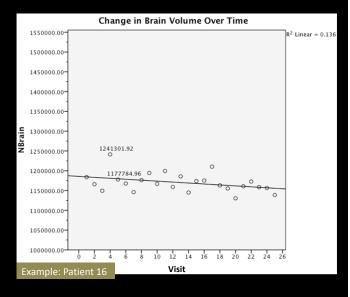
Impairment on 2-3 Individual Tests
 Significant Impairment 1/3 Sets


Moderate


 Impairment on 4-5 Individual Tests Significant Impairment 2/3 Sets

Severe

Impairment on ≥6 Individual Tests
 Significant impairment 3/3 Sets

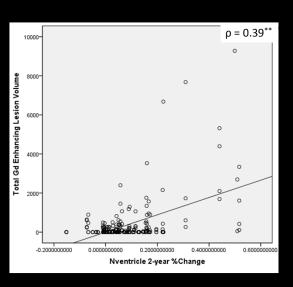

- Impaired = 1 SD
- Significant Impairment = 2 SD

Normalized Brain Volume Variability Over 2 years

- % change in volume over 2 years was determined
- <u>Categories</u> <u>included</u>:
 - Whole brain
 - White matter
 - Peripheral Grey (Cortex)
 - Ventricle

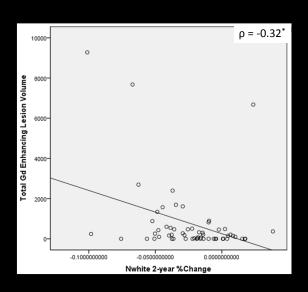
Active Gadolinium-enhancing Lesion vs. Cognitive Impairment

- MRI scans at the time of cognitive testing were evaluated by volume of Gadolinium enhancement
- Cognitive tests were performed at 0, 6, 12, and 24 months
- MRI Gadolinium enhancement was categorized by total volume (mm³):
 - **(1) 1.**0 to 199 **(2)** 200 to 399 **(3)** 400 to 599
 - (4) 600 to 799 (5) 800 and above


Cognitive Performance vs. Gd Volume Level of Impairment Patients with Gd enhancement at in Information Processing/Memory the time of cognitive testing were Normal more likely to be impaired on Mild ■ Moderate information processing/memory (p<0.01) Seen with Gd >800 mm³ Effect was mild impairment Driven by PASAT No drop in performance based upon total Gd lesion volume was observed for: Volume Level Visual-spatial/executive Verbal memory/attention

Cognitive Sets and Represented Domains³ Set Domain Subtest (A) Ruff Figural Fluency Test error ratio Visual Learning Information Processing/M **Auditory Processing** emory California Verbal Learning Test trials 1-5 total Verbal Learning **Processing Speed** Digit Symbol (B) Visual-Visual-spatial WMS-III Spatial Span Spatial/ Executive Problem Solving Wisconsin Card Sorting Preservative Responses Function Visual Scanning WAIS-III Symbol Search Tower of London % Planning Time (Problem solving time) Planning/Sequencing Visual Interference Stroop Color-Word Test (C) Verbal Verbal Abilities WAIS-III Information Scale Memory/ Attention WAIS-III Digit Span Attention Span

Ventricular Enlargement and White Matter Loss vs. Gadolinium-enhancing lesion volume


Gadolinium Enhancing Lesion Volume vs. Normalized Ventricle Volume

 Gd lesion volume at baseline was predictive of 2year % increase in ventricular volume (p < 0.01)

Gadolinium Enhancing Lesion Volume vs. Normalized White Matter

 Gd lesion volume at baseline was predictive of 2year % change in white matter volume (p < 0.05)

Gd volume at baseline vs. 2-year% change in whole brain and peripheral grey (cortex)

- No significant relationship was found between Gd volume at baseline vs. 2-year % change whole brain
- No significant relationship was found between Gd volume at baseline vs. 2-year % change peripheral grey (cortex)

Ventricular and White Matter Volume % Change vs. Cognitive Impairment

- Increases in ventricular volume over 2 years was correlated with deficits in:
 - (1) Information processing and memory at 24 months**
 - (2) Overall cognitive impairment at 24 months*
- Decreases in white matter volume over 2 years was correlated with deficits in:
 - (1) Overall cognitive impairment at 24 months*

*p < 0.05, **p < 0.01

Conclusions

- Processing speed may be mildly impacted when active lesion volume is high in this early MS cohort
- Gd lesion volume at baseline predicted ventricular and white matter atrophy over 2 years
- Two year cognitive impairment was related to ventricular and white matter atrophy over 2 years
- Of the cognitive sets, information processing speed seemed most associated with some MRI changes
- In this dataset, cortical volumes did not appear to be predictive of cognition over 2 years

Future Directions

- The majority of this early MS cohort showed mild to no impairment during cognitive testing over 2 years
- Thus, a 10-year follow-up assessment could demonstrate additional correlations between volume change and cognitive performance as a result of disease progression

Acknowledgements

- Dr. Robert T. Naismith, Research Mentor
- Samantha Lancia, Patient Coordinator
- Gautam Adusumilli and Zach Goodman, Research Assistants
- CSMC Foundation for Summer Scholarship and Travel Funds for Meeting
- National MS Society for funding these additional BECOME analyses and the 10 year follow-up study
- Bayer Healthcare for collecting the original data and allowing for its continued use

References

- Cadavid, D., et al., (2009). New acute and chronic black holes in patients with multiple sclerosis randomized to interferon beta-1b or glatiramer acetate. J Neurol Neurosurg Psychiatry, 80:1337-1343.
- Amann, M., et al., (2011). Altered functional adaptation to attention and working memory tasks with increasing complexity in relapsing-remitting multiple sclerosis patients. Human Brain Mapping, 32(10): 1704-1719.
- 3. Fischer, J., et al., (2000). Neuropsychological effects of interferon beta-1a in relapsing multiple sclerosis. Annals of Neurology, 48: 885-892.
- 4. Fischer, E. and Benedict, R. (2012). Correlation of cognitive impairment and thalamic atrophy in MS. Neurology, 79: 1748-1749.
- 5. Schoonheim, et al., (2012). Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology, 79: 1754-1761.
- 6. Benedict, R and Zivadinov, R. (2011). Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol, 7: 332-242.
- 7. Zivadinov, R., et al., (2001). A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry, 70: 773-780.
- Structural Segmentation: http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/struc_seg.pdf

Table 1 Baseline characteristic BECOME study	Baseline characteristics of the 75 patients randomized in the BECOME study			
	IFN β 1b (n = 36)	GA (n = 39)	p Value	
Age, y, mean (range)	36 (18-49)	36 (22-55)	0.96*	
Women, n (%)	27 (75)	25 (64)	0.33*	
Ethnicity, n (%)				
White	15 (42)	24 (62)	0.12*	
Black	10 (28)	11 (28)		
Hispanic	10 (28)	4 (10)		
Indian-Asian	1 (3)	0		
Subtype of MS, n (%)				
Relapsing-remitting	31 (86)	30 (77)		
Clinically isolated syndrome	5 (14)	9 (23)	0.38*	
Time since onset of MS				
Median years (range)	0.9 (0.1-24)	1.2 (0.2-34)	0.35*	
Annualized relapse rate, median (range)	1.8 (0-7.5)	1.9 (0.13-7.0)	0.53*	
EDSS, median (range)	2.0 (0-5)	2.0 (0-5.5)	0.98*	
Enhancement on MRIs predrug, n (%)	26 (72)	27 (69)	0.81*	
CAL at entry, mean (median)	4.7 (1.75)	3.1 (1)	0.31*	
MSFC, median (range)	0.13 (-1.5 to 1.0)	0.13 (-2.7 to 1.16)	0.82	